MULTIMODAL ATTENTION-AWARE CONVOLUTIONAL NEURAL NETWORKS FOR CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA

Multimodal Attention-Aware Convolutional Neural Networks for Classification of Hyperspectral and LiDAR Data

Multimodal Attention-Aware Convolutional Neural Networks for Classification of Hyperspectral and LiDAR Data

Blog Article

The attention mechanism is one of the most influential ideas in the deep learning community, which has shown excellent efficiency in various computer vision tasks.Thus, this article proposes the convolution neural network Accessories method with the attention mechanism to enhance the feature extraction of light detection and ranging (LiDAR) data.Meanwhile, our elaborately designed cascaded block contains a short path architecture beneficial for multistage information exchange.With the full exploitation of elevation information from LiDAR data and efficient utilization of the spatial-spectral information underlying hyperspectral data, our method provides a novel solution for multimodal feature fusion.Experiments are POE Switches/Injectors conducted on the LiDAR and hyperspectral dataset provided by the 2013 IEEE GRSS Data Fusion Contest and multisource Trento dataset to demonstrate the effectiveness of the proposed method.

The experimental results have shown the superior results of the proposed method on both LiDAR and multimodality remote sensing data in comparison with several popular baselines.

Report this page